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RANDOM COVERAGE OF A CIRCLE WITH APPLICATION

TO A SHADOWING PROBLEM

1. INTRODUCTION

The problem under consideration in the present study belongs to the class of
problems of random coverage of a circle by randomly placed arcs having random
length. The specific problem studied here is motivated by a shadowing problem,
according to which the random arcs on the circle are shadows cast by randomly
scattered disks on the plane. The model assumes that the centers of the disks
form a homogeneous Poisson process on the plan, with intensity P per unit area.
Furthermore, given the number of disks centered in a specific Borel set in the
plane, the model assumes that their diameters are identically distributed inde-
pendent (i.i.d) random variables with a known distribution. Assuming that the
circle is not intersected by any disk and its center (the source of light) is
uncovered, shadow arcs on the circle are defined as the central projections of
random disks which lie entirely within the set inscribed by the circle. Accord-
ingly, the model assumes that the number of shadow arcs covering the circle is a
Poisson random variable. Given this number, the centers of the disks are condi-
tionally independent having a uniform distribution. The length of the shadow
arcs are conditionally i.i.d. random variables, having a common distribution on
[o, w]. The main objective of the present study is to obtain the distribution
of a measure of vacancy of arcs on the circle. The measure of vacancy of an arc
is the total length of the portion of the arc which is in the light. Equations
for the moments and the moment generating function of the measure of vacancy of
arcs of length t, 0 c t c 2s, and given in section 4. Furthermore, for 0 4
t e 7 a formula of the Laplace transform of this moment generating function is
developed. The derivations in Section 4 are based on formulae of vacancy proba-
bilities derived in Sections 2 and 3. More specifically, in Section 2 we pro-
vide general formulae for: (1) the probability that an arc of length t on the
circle is not covered; (2) the probability that a finite set of specified points
are simultaneously uncovered. These formulae are further developed in Section 3
in terms of the stochastic specifications of the random arcs. In Section 5 the
results are applied to the particular shadowing problem under consideration.
Analytic formulae for the numerical determination of the moments of any order,
for a particular example, are given in Section 6.

The literature on the coverage problem is very extensive. Robbins [4] de-
rived the moments of the total coverage of an interval on the line by random
segments of fixed size. These results were later extended and generalized by
Robbins [5), Domb [2], and Takacs [9]. Other related results are presented by
Solomon [8]. Siegel presented in [6] moments of the measure of vacancy of the
circle when the coverage is by a fixed number of random arcs having random
length. In a following paper [7] Siegel provided formulae for the moments and
the distribution of the measure vacancy on a circle, which is covered by a given
number of random arcs of fixed length. The motivating shadowing problem led us
to further developments over those of the previous papers, although the basic
approach to the evaluation of moments is essentially the same as that of
Robbi ns.
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The shadowing problem did not receive much attention in the literature.
Chernoff and Daly [1) considered a similar shadowing problem when the shadows of
random disks are cast on a straight line. They provide the methodology for de-
veloping the distributions of the length of intervals which are entirely in the
light or entirely in shadow. It should be remarked that the shadowing process
discussed in the present paper is identical over the interval [o, i] with an
M/G/- queuing process.

2. THE COVERAGE MODEL AND FUNDAMENTAL RESULTS

Consider a circle, C, of radius one centered at the origin. Let Al, A2,...,
AN be N arcs placed at random on C. N is a random variable having a Poisson
distribution with mean 2ir). Given that N = n, the centers of A1,... An are con-
ditionally independent and uniformly distributed on C. Let Xi i  1,...n) de-
note the arc length of Ai. It is assumed that Xi..., Xn are i.i.d. random vari-
ables having a c.d.f. F(x) on [o, v].

It is well known that the probability of covering any specific point on C by
a randomly placed arc is y = E{X)/2w. This result will be obtained as a special
case of a more general result derived in the present paper. Let P., designate a
point on C having polar coordinates (1, r), 0 Cr<2v. Let Q(-r) denote the number
of arcs which cover P1. Given N = n, the conditional distribution of Q(T) is
the binomial B(n,y). Accordingly the (total) distribution of Q(T) is the Pois-
son with mean p - 2 y a XE{X). Notice that due to the symmetry in the model
the distribution of Q(-r) does not depend on r.

Consider a specified arc on C of length t, o<t42i, connecting the points Ps
and Ps+t. Let qn(t) denote the conditional probability that such an arc is com-
pletely uncovered by random arcs, given N - n. This conditional probability is

qn(t) - P{ V Q(T) = OIN-nI, (2.1)
s4TC-s+t

where VQ(T) denotes the maximum of Q(T) over the specified interval. Since
T

the random arcs are conditionally independent, given N-n, qn(t) - (q, (t))n, for

all t, o<t42s. Accordingly, the probability that a specified arc on C of length
is uncovered is

q(t) = e-12,nuo n' q~t)

(2.2)
expj-2wX(1-q, (t)}--- -T --

2 I

*1 t  ,',

d~j '! n i, 1 (}



Explicit derivation of q (t) is given in Section 3. In particular, for t-0, we

obtain that q1(O)-1-y and the probability that any given point on C is uncovered

is

-q(O) a e-P (2.3)

Let Ps s.* Ps be r specified points on C, where r;,2 and 04s, <S2<(sr<
2%.

Let toz 2w1sr+si , tins ms.,s i4..r be the length of the arcs connecting

these points. The conditional probability, given N-n, that all these r points
are uncovered is function of (tl...., tr-..) defined by

Pn (t,.,tr..) - P ( V Q(si) -OjN-n) (2.4)

r_ 1
0-t1 i-i. r-1) and tic2s.

Again, due to the conditional independence, Pn(tloo.., tr-..) a(P 1 (t11 . tr-1 ))n

r- 1
for all (t ~,.,tr...). Notice that to a2wr- ti. Finally, the (total) prob-

ability that the r points are uncovered is

P(tjs... tr-1.) w exp {-2w)X(1-p 1(tj,-.,tr.1)))* (2.5)

Explicit formula for pl(t 1,..., tr..i) will be given in Section 3.
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3. VACANCY PROBABILITIES

In the present section we develop explicit formulae for q,(t) and pl(tl,...,

tr-1). As defined in the previous section, q,(t) is the probability that a ran-

domly placed arc does not intersect a specified arc of length t. This probability
is given by

1 2w-t
q1 (t) • f F(x)dx. (3.1)

0

Introduce the auxiliary function

2w
t(t) f [1 - F(x)]dx, Otc2,. (3.2)

t

Notice that *(O) - E{X) and that, *(t)-O for all t,%. Accordingly,

q1(t) - 1 - L [t + E{X} - *(2%-t)J, Ot<2w. (3.3)
2:f

From (3.3) one obtains the previously mentioned result that qi(o) • 1-E{X)/2w - 1-y
and

q(t)- a exp -t t ,Ot-2. (3.4)



Another important result that can be obtained from (3.4) is the distribution of
the length of an uncovered arc starting at an uncovered point Ps. More specifi-
cally, consider the r.v.

HS - sup {t; V Q(r) * 0, 0t2W (3.5)
s4(r(s+t

where Q(s) - 0. It follows that

P {Hs > t - q(t)/& (3.6)

e-At ,04tc1

e -t+X (2w-t) ,wt<2v

0 ,2w(t

Notice that the distribution of Hs has a jump point at ta2, and

P (Hs - 2r) - e-2wl/&. (3.7)

For the derivation of an explicit formula for pl(tl,..., tr.1), let Bo denote the

event that a single random arc lies entirely within the arc between Psr and Ps

and Bi (i-I,..., r-1) the event that the random arc lies entirely between Psi and

Ps i+. Thus,

P (BI) q(2, - ti) (3.8)

II

T [ t i  +  (ti) "E{X)], -0,..., r-1.

. .. .. . . . . . . m I ... . . 1 I I mll. ... . i ... .5



Finally, since B0,0009 Br..1 are mutually exclusive and their union is the event

V Q(si) -*

r- 1

21 'ff1 r-1

Substitution of (3.9) in (2.5) yields

r-I
p(t11..., tr..l) - Cr exp {X iI #(ti)). (3.10)

in particular, for ru2, the joint probability that two specified points. Ps and

Ptare uncovered by random arcs is

1 ~2-1*(21F't) wn<t<2ir

4. THE MEASURE OF VACANCY

Define the stochastic process (I(t), Oct) where

1(t) 0 if Q(t mod 2v);1 4.1

1 ,if Q( t mod 21r)-O.
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Notice that the sample functions of this process are step functions, since with
probability one there are only finitely many random arcs. The measure of vacancy
of a specified arc from Ps to Ps+t, t>O, is a r.v. defined as

s+t
Y(s,t) - f l(-)dl ,ocs,t*2%. (4.2)

This measure of vacancy is the sum of lengths of all the uncovered arcs between
Ps and Ps+t- The distribution of Y(s,t) clearly does not depend on s and is con-
centrated on the interval [O,t]. The corresponding c.d.f. is continuous on (O,t)
and has jump points at 0 and t. Furthermore,

P {Y(s,t) - tj = q(t). (4.3)

Let &r(t) denote the r-th moment of Y(s,t). In particular,

t
{ (t) x E{Y(s,t)) f f E{I(i)] dr &t. (4.4)

0

Indeed, E{I(t)) - P{I(T) - 11 -

Furthermore, for every r2 and O(s<s 2..<sr<2v,

r
E { I I(si) } * p(t1 ,..., tr.1). (4.5)

i =1

7
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Accordingly, the r-th moment of Y(s,t), for r2, is

r
Er(t) - r! f f • • S E I-R I(si)) ds ... ds (4.6)

Jul r
sc's1 ... <Sr(S+t

t T -r-t I
r!&r f dr (t-T)eX(2-T) f dt e'(t1) f dt 2

0 0 0

r-3
T- I t

tI r-2

e)*(t2 ) f f • • j dtr.2 expIX(tr2) + XOT- ti)}.
0 0 i-1

Let {vr(t);r)ll be a sequence of convolutions defined recursively in the follow-i ng manner:

0 ,f t<O
,]() - ex#(t) ,if t-11

and

t
*r(t) f *i( )*r..l(t-)dT, ro2.

0
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Accordingly, formula (4.6) can be expressed in the form

t
Cr(t) -r[t f (t-r)*1(2wr-r )*r-.1(T)d-r. (4.8)

0

From formula (4.8) we obtain immediately that

d t
Er(t) -r!&r f *1(2vrT)*r.1(T)dT (4.9)

0

and

This means that, for every r)2, E(t) is an increasing convex function of t and
for ru1 it is an increasing linear function of t.

Introduce the moment generating function (m.g.f.) of Y(s,t)

r

r=o

and let

,P(v~t) v r 4'r(t) ,--<v<- (4.12)
r1

9



Notice that #(t)-c EMX and therefore 14*1(t)-c1/C. It follows that Vr(t)uO(f),
r;P1 and therefore *(v,t) is convergent for all real vu. Furthermore, from (4.7),the generating function *i(v,t) satisfies the renewal equation.

t
*(v,t) u *It + V f * 1(Tr) *(V,t-T)dT. (4.13)

0

Finally, from (4.8), (4.11), and (4.12) we obtain the formula

t
&(v~t) a 1 + &tV + &V j (t-.r) * I(21-T) *(&V.T) dT .(4.14)

0

Generally, the distribution function of Y(s,t) can be obtained from (4.14). Weprovide now further development for the case of t"w. In this case *(2w-T) -for all OuTt. Hence, from formulae (4.7) and (4.8) one obtains the recursive
formula

t

0

It follows that the m.g.f of Y(s,t) satisfies the integral equation

t
&(V,t) - Y(v't) + &V f (u)C(v,t-u)du, (4.16)

0

where

t
yf(v't) u1+ tv(t - f' *1(u)du) .(4.17)

0

10



Let h(v,t) be the solution of (4.16) for all real v and non-negative t. Clear-
ly, for Ort'a, h(v,t) u 9(v,t). This solution can be interpreted as the m.g.f.
of the measure of vacancy of a specified interval of length t on the real line,
when the coverage process is by random intervals of length X, having a c.d.f.
F(x). Let h*(v,w), w>O, be the Laplace transform of h(v,t). From (4.16) one
obtains

y*(v,w)
h*(vw) - (4.18)

where y*(v,w) and ,*(w) are the Laplace transforms of y(v,t) and *1 (t), respec-
tively. Furthermore,

Y*(vw) !V + 1 (1 Evy*(W)) (4.19)

Hence,

1 {v 1
h*(vw) - + -- (4.20)

5. APPLICATION TO A SHADOWING PROBLEM

Consider a countable number of randomly distributed disks on the plane. For
any Borel set B in the plane, the number of disks, N{B), centered in B is a ran-
dom variable having a Poisson distribution with mean um{B) where v is the aver-
age number of disks per unit area and m{B) is the 2-dimensional Lebesgue measure
of B (area). We further assume that, given N{B)-n, the centers of these n disks
are conditionally independent and uniformly distributed over B. The diameters
of the disks are i.i.d. random variables, Y1, YI,... having a common c.d.f.
G(y), o<y<-. Let C be a circle in the plane which does not intersect any one of
the random disks and whose center, 0, is uncovered. The central projections on
C of disks whose centers lie within C will be called shadow-arcs. The results
of the previous sections are applied to determine properties of the distribu-
tions of the measure of vacancy of specified arcs on C.

11



Let (p,e) denote the polar coordinates of the center of a disk, with respect to
0. Thus, each random disk is specified by a triplet of random variables
(pe,y). We consider only disks with random parameter vector (pO,y) in the
set

S = {(p,e,y);-y <p<l-y/2; oO(<27r, Oy<1} (5.1)

N{S) has a Poisson distribution with mean

1 2w 1-y/2
E{N{S)} - u f f f pdpdodG(y) - 2%x, (5.2)

o o y/2

where

S- ~f (1-y)dG(y) . (5.3)
2 0

It is assumed that G(y) is absolutely continuous with p.d.f g(y). The condi-
tional p.d.f. of (p,e,y) within S is

"spoy) 2r ,(Ppey)cs (5.4)

Let X(p,e,y) denote the length of a shadow-arc projected by a disk with parame-
ters (p,O,y). This length is given by

X(p,O,y) - 2 sin-1 (y/2p) (5.5)

Given N(S) = n, let XI,...,Xn designate i.i.d. random variables representing the
lengths of the n shadow-arcs. The common distribution of these random variables
is the c.d.f., F(x), of the random arcs discussed in the previous sections.
According to (5.4) and (5.5)

12



F~x 3 DX) ' -I"2 pdP) g(y)dy (5.6)
1~ 0 y

2sin(x/2)

pi D X) y2
- I (1-y-. -Cot2(x/2)) g(y)dy,

2A o 4

where

D(x) - 2sin (x/2)/(1+sin(x/2)) - 1-tan2( 2 ) (5.7)
4

is the largest diameter of a disk that can yield a shadow-arc of length x. That
is, if y 4D(x) then y/(2sin (x/2)) 41-y12. Consider the distribution func-
tions, related to G(x),

BA(x) * YX) yL-(l..y)l"L/12g(y)dy, oxw (5.8)
CA 0

where

CA f y'(1..y)lL1/ 2g(y)dy
0

is the normalization constant, Notice that coa2x/p. The distribution function
F(x) can then be expressed as

F(x) B :0 Wr -L B2 (x )Cot2(x/2),o-cx~w (5.9)
4C0

97r <x

13



It should be remarked that

cot (x/2) I1-D(x)/D(x) *(5.10)

Hence, since D(x) *0 (5.8) yields

cot2 (x/2) B2(x) - c2(1-D(x))G(D(x)) + o(D(x)). (5.11)

dx

one obtains from (3.2), (5.9), and integration by parts

11 ~c2
*()*I[1-80(x)]dx + i- f [1-B2(x))dx (5.12)

t 4c t

+-(c, w i) + - [cot (t/2) 82(t) + (t/2)]
c0  4 2co

ci
- B1(t).
0

6. COMPUTING THE MOMENTS IN A SPECIAL EXAMPLE

In the present section we apply the theory of the previous section to develop
formulae for the determination of the moments of the measure of vacancy in the spe-
cial case that G(y) is the uniform distribution on (0,1). In this case we obtain
according to (5.7) and (5.8) the formulae

14



f[1-Bo(x)]dx (6.1)
t

Jtan4 (!-) dx. ! tan3(-) -4tan (=-) + 1t
t 4 3 4 4

61(t) - 1- ! tan3(-) + ! tans(-)(62
2 4 2 4

and

14 W-t 16 t
f [1-B2(x)]dx * tans(-) - -~ tan3(-) (6.3)
t 5 4 34

+ 28tan(!--) -7(v-t)
4

Futhermiore,

1
cot (t/2) B2(t) - D2 (t)(1-D(t)) 1 / 2  (6.4)

tan if -) -Ztan 3(L-t) + tan(-t)
4 4 4

Finally, since co-l/2, cUm4/15 and c 2al/3 one obtains by substituting the above

results in (5.12) the special formula for #(t)

4(t) - (i-t) + ! tan (!-) + - tan3( 11-t) (6.5)
3 3 4 9 4

15



Accordingly, in the case of uniformly distributed diameters on (0,1), the expec-

ted length of a shadow arc is EX) 4(0)- 0.7306, and the first

moment of vacancy of an arc of length t is Cl(t) - t-exp{-0.73061).

In order to determine higher moments r(t), r;-2, we have to perform the con-
volutions (4.7) and (4.8) recursively, where

0 ,t<O

*(t) - exp { ( - (-) -tan (-) " tan3 (1)]J 0tw (6.6)
1,art

We present now a polynomial approximation to the moments Cr(t), r#2, for
OMtr. In this range of t values the moments will be approximated by an analy-
tic solution of the recursive equation,

Z(t) - (t)1

t
C(t) - rC f *(u)C (t-u), r;2, (6.7)

0 r-1

where ;(u) is a polynomial approximating * (u), over [0,w]. Notice that ' (u)

is an analytic function and can be approximated by a polynomial of a proper de-
gree. We approximate the function (6.6) by the fourth degree polynomial

2 3 a.

;(t) - 2.0486 - 1.69t + 1.124t - .3489t + 0.0411t (6.8)

The coefficients bi of t (iuO,...,4) in (6.8) were determined by the method of
least squares by fitting a fourth degree polynomial to 33 points (ti,* 1 (ti)),

where t-11/32. i-O,...,32. The standard deviation of the residuals 4l(ti) -

*(ti), with 228 degrees of freedom is a-.00911, with a squared-multiple correla-
lation of R a.999. This is a very high degree of accuracy in approximating

(t) by (t). Define recursively the coefficients,

16



C 0 in (6.9)

and for each r),2

jjbjCr.iij/(') .iuO,...,4(r-1)

Cr1 * (6.10)

1 0 i>4(r-1)

in which

1j.coefficients of (6.8) J-O...,'4 (6.11)

Qne can prove then, by induction on r, that

C (t) , r r4(-)Ci

10 (r41)

For small arcs, i.e., as t.*0, formula (6.12) can be simplified, by approximating

*(t) by ;(t)-v (0)+t*/(0), where the derivitave of *(t) is

(1 (1 11 4( . 3

Cos

17



Thus, as t-O we obtain the approximation

r-1 Dr) r-l-j / i

Mr(t) - tr~r I * (*/) t (6.14)

j-o j

where *1=Y() and *'-*'(0). In Table 1 we provide numerical values of the nor-

malized moments zr(t)/tr, for r-2,...,10 and the limiting value

lim Cr(t)/tr * q(t) , (6.15)

for values of tiuiw/M, i-4,8,...,64 (M-64). The values of the normalized mo-

ments for the case of i-4 were computed according to (6.14), with *1(0)-2.076326

and #, (O)Ma'i(O). The normalized moment of order 1 is C-.48162 for all t. In

Table 2 we present the corresponding standard-deviations a(ti) , measures of
skewnesss, y1 (ti) and kurtosis Y2(ti), where

Y1 (ti) 4 13 (t )/ 3 (ti) (6.16)

Y2 (ti) U '4(ti)/G&(ti)

and u3(ti), u4(ti) are the third and fourth central moments. According to Table
2, the distributions of the measure of vacancy are for small arcs (as t+O) nega-
tively skewed and sharply increasing near the right limit of the interval. On
the other hand, as t increases to i the distributions become more symmetric and
can be approximated within (O,t) by Pearson's Type I distributions (see Johnson
and Kotz [3]).
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Table 1. The Normalized Moments r(t)/tr Determined
According to (6.12) and (6.14),
for ti-iu/64 (i-4,8,...,64)

i/r 2 3 4 5 6 7 8 9 10

4 0.4816 0.4343 0.4267 0.4212 0.4173 0.4145 0.4123 0.4105 0.4091 0.3958

8 0.4301 0.4024 0.3842 0.3707 0.3599 0.3508 0.3428 0.3356 0.3291 0.3252

12 0.4117 0.3755 0.3525 0.3362 0.3236 0.3133 0.3046 0.2970 0.2901 0.2672

16 0.3957 0.3520 0.3250 0.3062 0.2921 0.2809 0.2715 0.2636 0.2565 0.2196

20 0.3817 0.3315 0.3010 0.2801 0.2647 0.2527 0.2429 0.2346 0.2275 0.1804

24 0.3695 0.3136 0.2800 0.2574 0.2409 0.2282 0.2180 0.2096 0.2023 0.1483

28 0.3589 0.2980 0.2617 0.2375 0.2201 0.2069 0.1964 0.1878 0.1805 0.1218

32 0.3497 0.2843 0.2457 0.2201 0.2020 0.1883 0.1775 0.1688 0.1615 0.1001

36 0.3415 0.2723 0.2315 0.2049 0.1860 0.1720 0.1611 0.1522 0.1449 0.0823

40 0.3343 0.2616 0.2191 0.1914 0.1720 0.1577 0.1466 0.1378 0.1305 0.0676

44 0.3280 0.2522 0.2081 0.1795 0.1597 0.1451 0.1339 0.1251 0.1178 0.0556

48 0.3223 0.2438 0.1983 0.1690 0.1488 0.1341 0.1228 0.1139 0.1068 0.0456

52 0.3172 0.2363 0.1895 0.1596 0.1391 0.1242 0.1129 0.1041 0.0970 0.0375

56 0.3125 0.2295 0.1817 0.1512 0.1304 0.1154 0.1042 0.0954 0.0884 0.0308

60 0.3083 0.2233 0.1746 0.1437 0.1227 0.1077 0.0964 0.0877 0.0808 0.0253

64 0.3045 0.2178 0.1682 0.1369 0.1158 0.1007 0.0895 0.0809 0.0741 0.0208
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Table 2. Standard Deviations and Measures of Skewness and Kurtosis

i c 11, i 2

4 0.09811 -0.30546 1.58630

8 0.17480 0.05021 1.17473

12 0.24975 0.05300 1.26210

16 0.31780 0.05611 1.34884

20 0.37993 0.05902 1.43394

24 0.43699 0.06130 1.51655

28 0.48976 0.06262 1.59601

32 0.53389 0.06290 1.67165

36 0.58490 0.06221 1.74299

40 0. 62823 0.06089 1.80958

44 0.66921 0.05942 1.87096

48 0.70808 0.05835 1.92677

52 0.74505 0.05814 1.97704

56 0.78027 0.05897 2.02223

60 0.81398 0.06057 2.06333

64 0.84627 0.06179 2.10328

20



REFERENCES

[1] Chernoff, H., and J. F. Daly (1957). The distribution of shadows, Jour. of
Mathematics and Mechanics, 6:567-584.

[2] Domb, C., (1947). The problem of random intervals on a line, Proceedings
of the Cambridge Philosphical Soc., 43:329-341.

[3) Johnson, N. L. and Kotz (1970). Distributions in Statistics: Continuous
Univariate Distributions., Haught McMillan, New York.

[4) Robbins, H. E. (1944). On the measure of random set, Annals of Math. Sta-
tist.,_5:70-74.

[5) Robbins, H. E. (1945). On the measure of random set, I1. Annals of Math.
Statist., 16:342-347.

[6] Siegel, A. F. (1978). Random space filling and moments of coverage in geo-
metric probability, Jour. of Applied Probability, 15:340-355.

[7) Siegel, A.F. (1978). Random arcs on the circle, Jour. of Applied Proba-

bility, 15:774-789.

[8) Solomon, H. (1978), Geometric Probability, SIAM, Philiadelphia.

[9] Takacs, L. (1958). On the probability distribution of the measure of the
union of random sets placed in a Euclidean space, Annals Universitaris Sci-
entiarum Budapestinesis de Ralemdo Eotvos Nominatae, 1:89-95.

21

h i i- I " l I.. --


